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P.R. KRISHNAIAH
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1. Introduction

fhe class of bivariate distributions in which we are interested
in this paper are those which are positive quadrant dependent. To be more
specific, let B be the Borel ©-field on the real line, R and BxB be
the Borel o-field on the two-dimensional euclidean space, Rz. If u is :it
a probability measure on BxB , we denote the first and second marginals :
of U by ul and u2 respectively. The probability measure Uu is

said to be positive cuadrant dependent if

we,= x [a=) > wilemh,{la=!}
for every c¢,d@ in R. The above notion can be restated as follows. Let

X and Y be two real random variables with some joint distribution function

F. X and Y are said to be positive quadrant dependent if § |
Pr(X >x, Y2>2y) > Pr{X >x) Pr(¥ >vy) I®]
O
for all x,y in R. See Lehmann (1966) for this and related notions of . ] e
“‘
dependence. By ... . e,
. Dist ibution 7
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We want to look at the above notion of dependence from a global
point of view. Choguet's theorem is in the background of the ensuing discussion. ,
Suppose M is a compact convex subset of a locally convex linear topological
space. Then by Krein-Milman theorem, there is atleast one extreme point of M.
Chogquet's theorem represents every member of M as a mixture (in some sense)
of the extreme points of M. For a full discussion on Chogquet's theorem,
see Phelps (1966). We want to pursue the same line of tack in studying the

notion of positive guadrant dependence. Accordingly, let MPQD denote
all
the collection of, bivariate positive quadrant dependent distribtuions.

A

We egquip MP with the topology of weak convergence. Suppose (i) M

QD POD

is compact and (ii) M:rn is convex. Then in accordance with Choquet's

theorem we can write every member of M?QD as a mixture of extreme points

of MP . There are certain common prcperties of extreme point distributions

QD
which are preserved under mixtures and a good understanding of the set of
all extreme point distributions would provide an insight into the structure

of a general bivariate positive quadrant dependent distribution.

But, the set MPQD is neither compact nor convex. Non-compactness

cf the set MPQD is not surpristing. The malaise stems from the non-~compactness f;

of the class of all bivariate distributions. The following bivariate

distributions are positive quadrant dependent.

b

But (1/2)u + (1/2)A is not positive quadrant dependent.




In the next section, we identify some natural subsets of MPQD
which are compact and convex. In Section 3, we discuss a method of enumerating
the extreme points of these compact convex sets. In Section 4, an application

of the results of Sections 3 and 4 is discussed in detail in the context

of contingency tables.

2. Compact convex suksets of M

PQD"

et A and VvV be two fixed probability measures on the Borel
o-field B of the real line. Let M(A,v) be the set of all bivariate
distributions | with the first and second marginals A and Vv

respectively, i.e.,

M(A,v) = { u; u is a probability measure on BxB , u. = X

and M, =V} .

Let MPQD(X,v) be the set of all bivariate positive quadrant dependent

distributions with the first and second marginals A and V respectively, i.e iiﬁ

MP D(X,v) = {u; u is positive guadrant dependent, u,6 = A

Q 1

=y}
and u2 v},
These sets are topologically and functional analyvtically are nice

as the following result exemplifies.

Theorem 2.1 M(A,v) and MP D(A.v) are compact convex sets.

Q

Proof. See B3haskara Rao. Krishnaiah and Subramanvam (1985).

Thus we obtain a decomposition of M into compact convex subsets

PQD
as follows.

MPQD = \J L\;) HPQDO"\))

A et T et
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3. Extreme points

Extreme points of the compact convex set M(A,v) have been
characterized by Lindenstrauss (1965) and Douglas (1964). The following

is their result.

Theorenm 3.1 A probability measure U in M(X,v) is an extreme point of
M(A,v) if and only if the collection of all functions h from RxR to R

which are of the form hix,y) = £(x) + gly) , x,y in R for some £ and
integrable with respect to A and V respectively
g .real-valued integrable functions on the real line/\is dense in

L, (RxR, BxB, u).
Proof. See Douglas (1964, Theorem 1, p.243). See also Lindenstrauss (1965,

Theorem 1, ».379).

We generalize the above result. We operate in the more general
realm of probability triplets. Let (X,C,.} and (Y,0,v] be two
probability spaces. Let M(A,v) be the collection of all probability
measures | on the product 0O-~field C(xD such that the first marginal of
4 is A and the second marginal of u 1is V. This notation agrees
with the notation introduced above in the context of probability measures

on the real line. Let

F° = {stY ; BeCr{r, . Ce D},

where IA denotes the indicator function of the set A. Let F be the

linear manifold spanned by FQ.

et et e e e e e e . .
- . - » - - - - » > - » - Tt et s vt - .\ ~ ‘. b b M =
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Thecrem 3.2 A probability measure U on CxD is an extreme point of
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M(A,v) if and only if F is demse in L, (XxY, CxD,w) .

Proof. The proof here is modelled on the proof of Theorem 1 of Douglas (1964,
p.243). Suppose U is not an extreme point of M(A,v). Let u = (Z + n)/2
for some 5 and n in M(A,v). This implies that 2u > n > O, and by
Radon-Nikodym theorem, there exists a function h in L“(XxY, CxD,u) such

that

%% = h a.e. Dﬂ , and

1-h#¥0 a.e. [y
The function 1 - h is orthogenal te F , i.e.,
f¢(l-h)du = Sfe£du - [fh
= ffdu - [fdn = [ffau - [faQu
= O for everv £ in F.

This clearly demonstrates that F is not dense in Ll(XxY, CxD,u). For,

if F were to be dense, since the dual Li(XxY, CxD,u) of Ll(XxY, CxP.uw)
is L_(XxY, CxD,u), the linear functional induced by 1 - h on Ll vanishes

identically on F would imply that 1 - h = O a.e.[p] .This contradiction

proves the assertion made above.

T e L e, e e e e, L e e e e . STt A - R I e T, . L NI U ool "
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Conversely, suppose F is not dense in L, (xxv, CxD,u). Then
there exists an essentially non-zero function h in QD(XxY, CxD,u)

orthogonal tc F. Set

n(E) = ;7 h & for E in CxD .
E

Since [ hf dy = O for every £ in F, we have, in particular, f h du =

This implies that n(Xx¥) = O. Define

ZE) = S (1 + n/llnf| ) , and
E
VE) = [ (1 - n/[{n[| ) e for E in CxD ,
E
where [|h[[_ is the L -norm of h. Since 1 + (/|lnl]| ) > o a.e. [4],

the set functions 7 and y are non-negative. In fact, I, v ¢ M(A,v).

We can now write y = (7 + vy)/2. This completes the proof.

We now exhibit some extreme points of M(A,V) using measure
preserving transformations. Let T be a measure preserving transformation
from X to Y preserving the measures i and v, i.e., T-l(D) e C and

A(T-I(D)) = v(D) for evexry D in U. lLet G be the graph of T, i.e.,
G = {(x, T™®) ; x & X}.

Let Pl be the projection map frem XxY onto X, i.e., Pl(x,y) = x for

every (x,y) in XxY. We claim tha% for every £ in x , Pl(El\ G) is

available in C.For, let E = {=z ¢ CxD ; Pl(E N G)e C}. One can check that

. J""- "' ..'

’
4

.:‘
-\
3y
-
N
y
!

Y




the rectangle sets in CXp) are available in E, £ is closed under

% ‘s %
e

complementation and countable unions. Hence E = (x0). Define a set

m ‘.‘,.."- -. -.

o

function 1 on (xp as follows.

O

.
"A

.~

u(E) = Mpl(zhc)) for E in CxXD .

We now check that u is a probability measure on (x0 with marginals

X and wv.

p(Cxy) = x(pl((nym G))
= A(ch T-lY) = A(C) for € in C.
u(Xxp) = M?l((Xxo)ﬁ G)) "~ for D in D.

= axNr i = arlp
= V(D) , since T is measure preserving.
The assertion that u is a probability measure is obvious.

We now claim that G 4is a thick subset of XxY under yu, i.e.,
the outer measure of G, u*(G) = 1l. For, if E is any set in CxD
containing G, then Pl(E¢W G) = Pl(G) = X. Loosely szeaking, the

measure U is concentrated on the graph of T.

Finally, we assert that yu is an extreme point of M(A,v). Suppose
u = (g + vuv)/2 for some 7 and vy in M(A,v). It is obvious that
Z*(G) = 1 = y*(G). Further, for any E in CxD, Z*(ENG) = 3(E)

and uU*{ENG) = U(E). IZ CxD ¢ CxP, (CxD) Nae CicN T-lD) x Y. Consequently,

Tt e e YT T
VI T o S Sy G Y Y




2
J

—8- L)
]
3 .
&, -1 -1 )
< (CxD) < Z((CAT D) x¥) = ACNT D) = u(cxp), 3
" ¢
] and E
- -1 . -1 N
" v(exD) < VIENT D x¥) = A(CNT D = u(cxD). -
. .
' . . &
Hence U(CxD) = Z(CxD) = U(CxD) for every C in C and D in D. ]
Therefore, . = [ = VU. This completes the proof. i
:: We now want to discuss characterizing the extreme points of i
l: M?QD(A'V)' where ) and y are fixed probability measures on the Borel .i
: ' e
- c-field B of the real line. Cne can prove that the product measure y Xy -
.ﬁ is always an extreme point of MPQD(A’V)' See Subramanvam anéd Bhaskara ¥
o
Rao (198Z). But this is in total contrast with the case of () ,y). The lﬁ
N product measure Xy is an extreme point of M(\,v} 1if and only if :i
v either 3 is O©0-1 valued or , is O0-1 valued. See Kemp (1968, p.1356). =
E
We do not have any characterization of the extreme points of MPQD(k'v) ‘ﬁ
g in the general case. Note that MPQD(A'v) is a compact convex subset -
" of M{(),.). It is easy to see that if }; is an extreme point of M().,))
;» and@ , belongs to MPQD(A'v)' then 3 is an extreme point of MPQD(R.v). zf
:j If y is an extreme point of MfQD(A'V)’ u need not be an extreme point E
-\ .
l‘ :
> of M{x,y). The numbers alsc do not exhibkit a pattern. If ) anéd vy
N
0 s :
A have finite support, there are casg\when the number of extreme points of o
5 MPQD(A,v) is strictly less than the number of extreme points cf M(A,v), '
- and cases the opposite haprerns.

¥
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When the probability measures A and V have finite support,
the subject of the determination of the extreme points of M(X,v) and

of MP D()\,V) have a distinct flavour. We now proceed to describe a

Q
method of determining the extreme points of these compact convex sets.
Without loss of generality, assume that the support of X is {1,2,...,m}

and that of Vv is {1,2,...,n}. Let P, = Adih, 1 =1,2,...,m and

g. = v({j}), =1,2,...,n. Fromw now on, we use the suggestive notation :

M(A,vy = M(pl,pz,...,pm;ql,qz,...,qn)
and

MPQD(K,V) = MPQD(pl,pz,...,pm;ql,qz,...,qn).

Extreme points of M(pl,pz,...,pm;ql,qz,...,qn)

. A - - . . M .. ;  eens
Any bivariate distribution in (91'92' Py ql'qz qn)
2

can be described in the form of a matrix = (pij) of order m x n

with the following properties.

(1) Py >0 for all i and 3J.
m
(1) L

=q, for j=1,2,....n.
i= 3

P
p B3

n
P [of = i = .
(i1i) j;l pij Py :or i 1,2,...,m

Definition 3.1 Let P = (pij) be any matrix in M(pl,pz,...,pm;ql,qz,...,qn).r.-

An orcdered sequence D. 3 ] in P 1is said toc be a
k°k

[p rp..rv-~l_
4L,3; T3,
loov in P if
(i) k 1is even,

(ii) il = 12, 13 = 14, .

. B LI e e e, . - . S e A . . . ~ - . - -

. O . . . ‘ . - .- . RN . . - . M ' e Y et e - el e Nt et - - Al N - - ~ -

™ " 2% A- a” et - o’ o . - 0] . - ~ - s e e m Y b . ® . O - = > Te N e O . , S : * b
dan el i o i . A i e i B i e B e B e a2 a2 a0 PRI




Y

Ll D A MV R A 1

e A AN

A

-' . -’

LN JUR S0 A SR S0
e e

. A S nt g
FCRE .

RN NS

Y

'
T
s a0

P A s

=

(1ii) 32=j3, 34=35, cee 4 ]k=31, 'E
(iv) the pairs (i_,3 ) for r =1,2,...,k are distinct.

A loop in P is said to be positive if every member of the loop is E
>

positive. Support of P is the collection of all pairs (i,j) for which -
. I 3 ;‘I

pij is positive. .
ki

The following lemmas are helpful in characterizing the extreme N,

points of M(pl,pz,...,pm;ql,qz,...,qn). .

lLemma 3.1 Every row (column) of a matrix P in M(p, ,pz,...,pm;ql,qz,...qn) k

contains an even number of elements of any loop in P. :::-
Proof. Obvious. ‘:'
P r P, L7 e 3P, L 0 D, ; (S ~
1,3, Ti333 *rly trlrel 4
Lemma 3.2 1If D. . + P, . 7,18 an infinite sequence of elements from a NN
- T3 TR A

a given matrix P with the property that any two consecutive suffixes are '_'.-

distinct, then we can £ind a loop in P consisting of elements from the

given sequence. .‘_:E
L
Proof. Let b be the first element in the sequence whose suffix agrees ?_::
—_— -
with the suffix of one of the elements a preceding b. _ '
Case (i). a=p, and b =7p . Then [:o. -3 P oeee 3 =
Yedx 13, ek ke N
Py 4 v By ] is a loop in P. ol
r-17r-1 r=-1l"r
Case (ii). a = P; and b = 9 4 . Then [pi 3 ¢ P, e
Kk k+1 ror+l k+19k+1  Tk+lke2
p + P :]:Lsaloopin P.
3y ta S
Case (iii)., a = p_ 4 and b = Pi 5 . Then [pi j ¢ Py 3 P oees 3 ;::
k“k r'r+l K+l k+l k+1-k+2 N
e




[}
[
k=
[}

\-‘l 3

s e

Py 4 ¢ Py g ] is a loop in P. £

r'r rr+l PSR

e

::.r Iy

Case (iv). a=p, ané b =p. . . This case can be disposed of “a
—_— i3 i3

k“k+l r'r ]

as in Case (iii). Y

Y

A

Lemma 3.3 If every row and column of P contains atleast two positive Ty

elements, then P contains a positive loop. :ﬁfﬁ

8 ‘-::': -

Proof. It is easy to construct an infinite sequence of positive elements }j?p

R

in P satisfying the hypothesis of Lemma 3.2.

v
R
Ve
N
PSS

We now give five different ways of characterizing the extreme . hi,ﬂ
points of M(pl,pz,...,pm:ql,qz,...,qn).

Theorem 3.3 Let P be any matrix in M(pl.pz,-..,pm;ql.qu--~.qn). The

following statements are egquivalent.

(i) P is nolL an extreme point of M(pl,pz,...,pm;ql,qz,...,qn).

(ii) There is a positive loop in P.

(iii) There exists a submatrix E of P having the property that {\ -

every row and column of E has atleast two pesitive elements. fﬂif

(iv) There exists a square submatrix D of P having the property

that every row and column of D contains atleast two positive elements.

(v) There exists a scguare submatrix F* of P, say, of order k,

having the property that the number of positive elements in F is atleast 2k.

Proof. The equivalence of (i) and (v) was proved by Lindenstrauss (1965,

p.382). The equivalence of (i) and (ii) was proved by Klee and Witzgall
(1968, Theorem 4, p.265). We prove the equivalence of these five statements oA

directly as follows. (Lemma 3.2 plays a crucial role in our proofs.) .




LRI s v gl SN s - aen el cn g -
A T e S R AR A S

(i) ===> (ii). Suppese P is not an extreme point of M(pl,pz,...,pm; S

o

ye

Q. 1GAre-++g ). For the remainder of this proof, we denote the above compact ‘}
177%2 n kY
-

convex set simply by M. Then we can write P =aB + (1-0)C for some !&
e

"

N . : < . : o
distinct B = (bij) and C = (cij) in M and o0O<aq 1. 1If pij =0, ;d
&

then -’ bij =0 = cij’ Since P and B are distinct, there exists a pair ad
. | !}
(i,,3,) such that p . # b, . . Clearly, ». _ is positive. Assume, %f
1 3, 4 13 o
without loss of generality, that p, . > b, . . There exists Jj, ¥ 3} such o
3, Hh 2° 1 EJ

is positive. There exists 12 ¥ il

that p < b, . . Note that p,
43, 4 1,3, 7
. -l
such that p, . > b, , and 3_ ¥ j, such that p, <b, . and so on. vl
132 153, 3772 1233 3333 =
Thus we can construct a seqguence D, ¢ P, i P, ¢ P, P e of Eﬁ
13 TRy i3 Tidy :

o

positive elements in P with the property that any two consecutive suffixes

L
8
1

are distinct. By Lemma 3.2, we can £find a positive loop in P.

(ii) ===> (v). Suppose P contains a positive loop p.

i r By

.o ’

ljl 232'

. Let sl = the number of distinct elements among il' 12, I 1

P
irjr r

and s, = the number of distinct elements among jl' jz, cee jr' Assume,

without loss of generality, that sl - 52‘ Let E be the submatrix of

order sl X 52 determined by il' 12, ces ir - th rows and jl, jz, cee o

jr ~th columns. Let D be a submatrix of E obtained by deleting sg - sl

AR

columns from E. Since every column of D contains atleast two positive

YN |

elements, the number of positive elments in D is atleast 251. and the order

v .
4 82

of the matrix D |is s1 X sl.

170,

2" Tx s '
2t

...............

y




(v) ===> (iv).

(iv) =e=> (1id).

(11i) ===> (ii).

This is clear.

This is also clear.

One can easily extract a positive loop from E and

hence from P.

(ii) ===> (i). Suppose Eo A -) r ese 4+ P j is a positive
1.3 i3
1°1 k°k
loop in P. let O <€ <minimum{ o, ., D, , , --- , D, , }. Define two
113 i3, L3y
= £ .
matrices B = (bij) and C (cij) as follows
b = D, +€ , 1if s 1is od4d,
isjs lsjs
= pi 3 -€ , 1if s is even,
s’s
bij = pij , 1f (4,3) # (is.js) for any s = 1,2,...,k,
c1 j = pi 3 +€ , if s 1is even,
s's s°s
= Pi 3 - , 1if s 4is odd,
s’s
cij = pij' i€ (i,3) # (is,js) for any s =1,2,...,k. _::'
Note that B and C are in M, distinct and P = %(B + C). Consequently, }i:j
.":',\':
P is not an extreme point of M. !ﬁg;

This completes the proof ¢f the theorem.

The above theorem provides some information on the supports of

extreme point

of the bivariate distributions in

A M(pl,pz,...,pm;ql,qz,...,qn).

.............
..............
----------------

........
......................
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Corollarv 3.1 Let P and Q be two distinct extreme points of

. c . <
M(pl,pz,...,pm,ql,qz,...,qn). Then the support cf P neither contains

nor is contained in the support of Q oproperly.

Proof. Suppose the support cf P is contained properly in the suppert of

, where P = (p ané

O=202 ‘ij)

Q. Llet (i ,,3j,) be such that ¢ > )
o Hha 43,

. . <p. . . Clearly,
Lz TR

will be equal to 2zero. There

Q= (qij). There exists 32 # Jl such that g

qi 3 is positive. For, otherwise, ?; 3
1°2 1-2

-# i such that g, ., > 5 3 which implies that 9 4 is

192 292 292

positive. Proceeding as above, we can construct an infinite seqQuence

exists i

2 1

d. r q, PR § P~ SO of positive elements in Q with the
130 i i3y il :

property that any two consecutive suffixes are distinct. By Lemma 3.2, there

exists a positive loop giving rise tc a contradiction to the veracity of
Theorem 3.3. A similar argument shows that the support of Q is not

contained in the support of P properlyv.

Corollary 3.2 let P = (Pij)

3

of M(pl,pz,...,pm;ql,qz,...,qn). Then the suppcrts of P and Q are
distinct.

that

Proof. Suppose’she supports of P and Q are equal. Since P and Q

are distinct, there exists a pair (il.jl) such that p, 3 # qi
1

1 131
Assume, without loss of generality, that p > q which obviously
L3 W

and Q = (qi ) be two distinct extreme points

AW

E 4 I'l
e

”
o .

P

H
T

O/

-

)



implies that that 2 is positive. There exists j2 # jl such that

ljl

P <gq, . Since the supports are equal, D, . is positive. There

i3 i3 i.3

172 1°2 172
exists i, #1 such that p, g. . , and so on. Thus we can construct
2 1l “i.3 i3 .
2°2 272
an infinite seguence p.,._. , P ;i P, 5 + P P e of positive
1337 743,70 Tip3p7 Tl

elements in P with the property that any two consecutive suffixes are
distinct. By Lemma 3.2, there exists a positive loop in P negating the

validity of Theorem 3.3. This contradiction proves the result.

Corollarv 3.3 The number of extreme points of M(pl,pz,...,pm:ql,qz,...,qn)

is finite.

Proof. The set of all subsets of {(i,3) : 1 =1 tom, j =1 ton} is

finite.

Corollary 3.4 1let S = (sij) be the matrix in M(pl.pz....,pm;ql,qz,...,qn),

where sij = piqj for all i and 3. Then S is an extreme point of

P .

.
A +

M(PI:PZ'-.-,pm;ql.éz.---,qn) £ and'only if P, = 1 for some i or

P

LRGN

S

qj = ] for some j. ;{?j
Proof. If either pi =1 for some i or qj =1 for some 4, then e
M(B, /PareeesD 39, +1G,r--++G. ) contains only one matrix S and consequently, 5:;‘
1°%2 m’ 31722 n : Y

D .~1

NERY

it is an extreme point of M(pl,pz,...,pm;ql,qz,...,qn). On the other hand, e

if pi # 1l for every i and qj # 1 for every j, then we can find

1 D, qr, qt all po§itive with u®¥v and r # t. Then Eéu:' sut' svt'

is a positive loop in S. Hence § is not an extreme pocint.
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N <16-
Remarks. The matrix S defined above is the product measure of the distribuuio
: pl'P27""pm and ql.qz,...,qn. The above corollary is a discrete analogue
d of Theorem 3 of Kemp (1968, p.1356).
j Examples.
- 1. m=2, n=2; pltpztﬁsql-qz.
: Extreme points of M(k,h;%,%) are
! F-: o] o 5"
and

lo 'J -
2. m=2,n=2; P, = 1/4, P, = 3/4; g " 2/3 and g, = 1/3.
i Extreme points of M(1/4,3/4; 2/3,1/3) ac<e

Mo 3/12 I'3/12 o ‘i

and
8/12  1/12 5/12 a/12].
3. m=2, n=3; 91-92-1/2; qlsqth3-1/3.

Extreme points of M(1/2,1/2; 1/3,1/3,1/3) are

2/6 1/6 o] [z 0 1/6]

L © 1/6 2/6| . &_O 2/6 1/6},

[1/6  2/6 o] [o 2/6  1/6]

|1/6 o 2/6] , |2/6 0 1/6].,
= T SRS SR DI PR e A e e e e T e A L S Rt N




[o 1/6 2/6] /6 o 2/6]
and
l_z/e 1/6 0 _' |1/s 2/6 o J .

Extreme points of MPOD(pl.pz....,pm: qysGyreee0Q )

n

We discuss a method o0f enumerating the extreme points of the

above compact convex set with the help of some examples. From this discussion,

a general strategy can be devised to enumerate the extreme points in the

general case.

1. The 2 x 2 case.

One can show that any bivariate distribution in MPQD(pl.pz; ql.qz

given in the form of a matrix P = (pi ) must satisfy the ineguality

3

Pydy < Py < PpA Gy

where a Ab denotes the minimum of the two numbers a and b. Conversely,
if a number p22 satisfies the above inequalities, one can find a matrix
in

.qz) whose (2,2)-th element is .p . More precisely,

Mpop (P17P2¢ 9y 22

this matrix is given by
P179;%%;2 957P2]
P27Pa2 P22 J :
Consequently, the extreme points of MPQD(pl'pz; ql.qz) are obtained by
setting Pyy = P4, and Py = pzlA q, separately and fill the rest of

the entries of the matrix using marginality conditions. There are only two
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o
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LA
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. -18-~
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i
i M ’ H ’
z extreme points of PQD(pl Pyi 9y qz) and these are given by
:
A
‘ -
i P9, 2,9, MFa,  a,p,
- P.9 p.q . o P
~ 21 T2721 - 2
.
) -
’ ,'qul 29! P ° 1
. and S if pzl\ q2 = qz.
’ LP2% 0% P27 %
I . , | | ]
:. Every member of MPQD(PI'PZ' ql’qz) is a convex combination of these
;. two extreme points. The following are two concrete examples.
;i Example 1. P, =9, = 1/2 = 9, = 9,-
;f The extreme points are
v 1/2 ) 1/4 1/4]
\ and :-f
- 0 1/2] 1/4 1/4] . ::5

M NENCRERCRONS

Example 2. p = 1/4, o, = 3/4 and g = 2/3, 9, = 1/3.

The extreme voints are

15 0 LSRR

AN YN

rY Y

{' 3/12 0 '] 2712 113
ﬂ' and
l_snz 4/13_] 612 312 .

2. The 2 x 3 case.

e ’., " o

AEARAEE | S AASAANS Nk

In this case, the determination of the extreme points of
" -t e e ;. -- :. + "'_{::- .......................................................... \.._ e e e e ,‘.“\-\A‘_ ..........
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»

o,
o

4



A e i e A S 4 e d

'l'. -f ..
ot e

-

TTe19-

) can be achieved graphically. If the matrix (p )

Moop(Py7Py7 91095095 i3

belongs to MPQD(pl'pZ; ql,qz,q3), then one can check that the following

inequalities must be satisfied.

P,9; £ Py; £ P,AGq; and

(Padz * Pp33) V Pp3 I Py ¥ Pp3 I Py A Gy * Ryl
(aV b means the maximum of the “wo numbers a and b.) Conversely, if

and p are two numbers satisfying the above inequalities, then

Fa2 Pa3

the matrix
9 7Py*Py"Pr3 %Py, q3""23]

$27F227F23 P22 P23 j
belongs to MPQD(pl,pz; ql.qz,qS). The above two inequalities determine
a simplex in the two dimensional 922 - 923 plane. The extreme points of
this simplex give the extreme points of MPQD(pl'pZ; ql.qz,q3). As an
illustration, let p, =p, = 1/2 and q =9, *q, " 1/3. The determining

inequalities are

1/6 < »,, £ 1/3 and

(1/3)V pyy = 1/3 £ pyy + 9,3 £ 1/2 A (/3 + P,4) = 1/2.

These inequalities determine the following simplex in the p22 - p23 plane.

There are four extreme points of the set MPQD(I/Z,I/Z; 1/3,1/3,1/3) which

are determined by the four extreme points of the simplex. Note that the set

M(1/2,1/2; 1/3,1/3,1/3) has six extreme points.

et
..‘_._,.‘\
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Dl et 1 b R R

o=

P22

1/3

SO THEEND Y

LR o
s a

Fer

1/6 P, 9 rp3

v

o} 1/6 1/3
=23

The four extreme points corresponding to Pl, Pz, P3, P4 respectively are

F-/G 1/6 1/6-| [1/6 1/3 o
e e sl 1/6 0 13|
[’1/3 1/6 o] i/3 ) 1/6'1
I_o 1/6 1/3J , 0 1/3 1/e_| .

Every member of MPQD(1/2,1/2; 1/3,1/3,1/3) is a convex combination of these

four extreme points.

3. The 2 x 4 case.

& 1 .
One can check that if a matrix (pij) belongs to MPQD(pl'pz'

g T e R S P e e et L
....... o Tl e, R e N T e T T T T s T St
3.2 A A A AN A I, Y Y G Y U A S R R O T G SR Wty O R A N I A A T




ql.qz.q3) . then

)Gy + PG VPyy £ Py3 ¥Ry, S PyAlgy+p,d.

Pyl + Pydy * Poq ) V (Pyy # Pyl X Pyy *Py3 ¥ Py <
Py A {9y + py3 ¥ Py )

Conversely, if and o are three numbers satisfying the above

Py’ Pos 24

inequalities, then they determine a member of MPQD(pl'pZ; ql,qz,q3) in

an obvious way. For details, see Subramanyam and Bhaskara Raoc (1985). We
illustrate the determination of the extreme points of this set with the

help of a concrete example.

let p, =2

1 = 1/2 and 9 =9, 93 TG, = 1/4. The determining

2

inequalities are

1/8 < p,, < 2/8,
2/8 < Pay * Py £ 2/8 + Pog and
3/8 Vv (p23 + 924) < Pys + 2,5 * 0y < 4/8 A (2/8 + Doy * 924).

The f£irst step in the determination of all extreme points consists of
eliminating the symbols V and A from the above set of inequalities
by splitting, if necessary, some of the inegualities. For example, the

inequality 2/8 < p.. + P < 2/8 + 2 is equivalent to the two
- 23 24 -

24

inequalities 2/8 < p,. + P < 3/8 and 3/8 < p., +p < 2/8 + .
= P3 TPy 2 = P3 TPy = P2q
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The splitting certainly helps to get rid of the symbols V and A. The

- -

above set of determining inequalities is equivalent to the following two

v

(A A

sets of inequalities. ?
I“
L3
< ,"‘
A. 1/8 < 924 < 2/8 ;
~
N
3/8 < Byy *Py3 By L 48 ,;:
B. 1/8 < p,, < 2/8 g
3/8 < Py3*t Py L 28y,
Pa3 * Ppq X Py * Pyt Ry L 48 3
3
Now, the second step consists of the following mancevres. In each set j.
‘-

of inequalities, set the central expression equal to the expression either

RS ol ¢

on the right or on the left. This will result in three equations in three
unknowns. These linear eguations are very easy to solve. From the solu;ion .
so obtained, one can build a matrix in MPQD(I/Z.I/Z: 1/4,1/4,1/4,1/4)

using the marginality restrictions. The set of all extreme points of

B & PO

MPQD(1/2,1/2; 1/4,1/4,1/4,1/4) is contained in the collection of all
matrices so obtained above. After eliminating the duplicates, the following
the -
is collection of all extreme points of MPQD(1/2,1/2; 1/4,1/4.,1/4.1/4). éf
/8 1/8  1/8 /8 [2/8 o /8 1/8] =
/8 18 18 1/8] , {_ 0 2/ 18 18l ¢
>
:
g ‘
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1/8 2/8 ) 1/8] 2/8 1/8 o 1/8]
1/8 ) 2/8 1/8§ , o 1/8 2/8 l/BJ '
1/8 1/8 2/8 ) ‘I !’z/a 0 2/8 )
1/8 1/8 o z/e_J , !_o 2/8 ) 2/8) ,
['l/e 2/8 1/8 o] Ir 2/8 1/8 1/8 o
J}/B o 1/8 /8 . |.o 1/8 1/8 2/8] .

2/8 2/8 ) o
and

o ) 2/8 2/8

The determination of the set of all extreme points in the general case
can be achieved by following basically the above two steps. For further

details, see Subramanyam and Bhaskara Rac (1986).
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4. Applications.to Contingency Tables Z:j

. ’ “at
. 0%
In this section, we are interested in the following problem. Let ;?

X and Y be random variables with known marginal distributions A and v L;

]
i

Ll e hl S R ]

respectively but with unknown joint distribution function. We want to

.
[

i

test the hypothesis that X ané Y are independent against the alternative

.

%)
.

-

.‘3
H

that X and Y are strictly positive cuadrant dependent. For simplicity,

)
~ .‘ ~.. l"l- 0]

assume that the support of A is {1,2,...,m} and that of v is
{1,2,...,n}. Let the data consist of N independent realizations of (X,Y).
s Let ngy o= Number of (X,¥)'s with X =i andY=3, i=1¢tom and

3 = 1 to n. The data can be arrangeé in the form of a contingency table

as follows.

{
i M1 M2 ot Mgy
. P21 P2 v Py
iy Pmo . L.
N
: There are a plethora of tests available to test the hypothesis of independence. 2
; A problem of choice arizes to test the above hypothesis of independence :;ﬁ
. N
against the above specific alternative. One way to resolve the dilemma is ;ig
'S ]
to compare the power functions of the tests. The domain of the power function ,f;
;.:::
e
: =
ot e e e S e T e e e e e e e e L L e g
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is MPQD(X,U). Computation of the power of a given test at every point

in the domain is not feasible practically. The following theorem asserts

x.
q)

-
Ll

"
5

RS

P

that it is enough to compute the power at all extreme points of MPQD(A,v).

Theorem 4.1 Let the extreme points of MPQD(X,v) be u(l), u‘z), vee s ﬁ&i

Ol

v M
o i

u(k’ Let T be a test proposed to test the hypothesis of independence

I I
4.)'

7
2Tl
P o

and BT( ) its power function. Let U be an arbitrary distribution

l/-
L4

b

in MPQD(A.V).(Then we can write

4
v
o

| =4
"
(23
=
[
+
2
i ~4
%4
+
+
2
=
=
_—
~
-~

.
B
L_;' ]

for some al’ az, with al + az + ... + uk = 1.)

t l' 'y
v

1

Then

* .
s’

v Y Ty
1 »

.- P
. .

4 KN
. 0

— Y

.

(1) (2) ' (k)
BT(u) “1 BT(u ) + a, ET(u ] o+ e.. o+ a BT(u ).

s

0 4y 8
:

..._.
AN
‘s '

For a discussion of this theorem, see Bhaskara Rao, Krishnaiah and

(1985).
Subramanyam /In view of this theorem, if we wish to compare the performance

-
s .

Py

-
1 3
U

v To e 'l"_‘ g
DA S A
BRI

: of two tests, we merely compute the powers of these tests at the extreme
point distributions and then compare these powers point by point. Teo é;i
- illustrate the mechanism of this theorem, we consider the case m = 2 = n. f}f
Asgsume, for simplicity, that P, < 9, Then the extreme points iE§
; " ; S
y Of pQD (Pl lpz ql'qz) are ‘-._:
AL

T SR S LY . .
‘.'n’-‘%'n'."c'-'-'-' T N T T T S VPSP P - . .
h 5 e v AR v T e > ' L PU [ A e e et
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N
-’ ":
[ 9, P, 4, e, a,-P, ij
= ‘.-
Pl < and o ) = Pz .
LP9y Py Py

There are two popular measures of association between X and VY

defined by
2,.P = PP
amma Ratio = y = M2 1221
P11%22 * P12Pp)
(see Goodman and Kruskal)
and
P,.P = Py 4P
Spesrman's rho = p = A2 izl

(?,P,9;9,)

I£ X and Y are independent, then ¥y = 0O = p. Further, one can
show that <y > O if and only if X and Y are strictly positive
quadrant dependent and that p > 0 if and only if X and Y are strictly

positive quadrant dependent.

Test based on the gamma ratioc : '1‘1

Reject the null hypothesis if and only if

7 . olf22 7 1271
P12 Y P12

g
f e

A e
/’l’l"..l- et -
(=5 .

"

-

Test based on the rho criterion : T,

-
-

2

-~ N

N

Reject the null hypothesis if and only if :*.s.
a

A, N, - n .0 ;

. 2 R, QA’
(p,P,9,3,) L

“s 2

AR
L .
L R

v A%

........................
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Let us calculate the power of the tests 'r1 and Tz

M ; .
extreme points of PQD(pl'PZ' ql.qz)

= Size of the tests Tl and Tz.

~

Under P., n.. = O almost surely anéd cconsequently, v = 1

2 21

with probability unity. Therefore,

B'r (P,) = Pr(Rejecting the null hypothesis/P,)
1

= Pr(y > a/?) = 1

-

It is now cbvious that 8 _(P.) < 8_ (P,). Hence the power
: T2 2 - Tl 2

function of Tl dominates the power function of Tz. As a matter of factsr

the power function of Tl will alwais-dominate the power function of any
test proposed for testing the hvoothesis of independence. In a nutshell,
what this means is that the test based on - Gamma Ratio
is the uniformly most powerful test for testing the hypothesis of

independence against the alternative of strict positive quadrant dependence

in the context of 2 x 2 contingency tables.

Comparisons of the power functions of various tests have

been carried out more elaborately in Bhaskara Rao , Arisnnaiah and

Subramanyam (1985).
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